The logisic function describe the classical logistic function,
logistic(x, yneg = -1, ypos = 1, lambda = 1, pow = 1) logistic2(x, yneg = -1, ypos = 1, lambda = 1, pow = 1, yzer = 0)
| x | a numerical vector. |
|---|---|
| yneg | asymptotic values when x tends to |
| ypos | asymptotic values when y tends to |
| lambda | scalar coefficient. |
| pow | x exponent. |
| yzer | values (for |
https://en.wikipedia.org/wiki/Logistic_functionwikipedia.org/wiki/Logistic_function
A numeric vector.
The classic logistic equation is:
$$f(x) = \frac{ypos-yneg}{1+e^{-\lambda x^{pow}}}$$
A slightly different version is:
$$f(x) = yneg + \frac{1}{\frac{1}{ypos-yneg}+(\frac{1}{yzer-yneg}-\frac{1}{ypos-yneg})e^{-\lambda x^{pow}}}$$
logistic2: A slightly different logistic function.